1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
|
library(productivity) library(openxlsx) library(dplyr) library(readxl) library(officer) library(flextable) library(ggrepel)
datafile \<- read_excel("Data/数据模板.xlsx") data \<- as.data.frame(datafile)
Malmquist \<- malm(data, id.var = "DMU", time.var = "Year", x.vars = c("Input1", "Input2", "Input3"), "解释变量2"), rts = "vrs", orientation = "in")
results \<- data.frame( DMU = Malmquist$Changes$DMU, Year.0 = Malmquist$Changes$Year.0, Year.1 = Malmquist$Changes$Year.1, effch = round(Malmquist$Changes$effch, 3), tech = round(Malmquist$Changes$tech, 3), pure_inp_effch = round(Malmquist$Changes$pure.inp.effch, 3), inp_scalech = round(Malmquist$Changes$inp.scalech, 3), malmquist = round(Malmquist$Changes$malmquist, 3) )
averages \<- results %\>% group_by(Year.1, Year.0) %\>% summarise( effch_avg = round(mean(effch, na.rm = TRUE), 3), tech_avg = round(mean(tech, na.rm = TRUE), 3), pure_inp_effch_avg = round(mean(pure_inp_effch, na.rm = TRUE), 3), inp_scalech_avg = round(mean(inp_scalech, na.rm = TRUE), 3), malmquist_avg = round(mean(malmquist, na.rm = TRUE), 3) ) %\>% mutate(Years = paste(pmin(Year.0, Year.1), pmax(Year.0, Year.1), sep = "-"))
results_avg \<- data.frame( Years = averages$Years, effch = averages$effch_avg, tech = averages$tech_avg, pure_inp_effch = averages$pure_inp_effch_avg, inp_scalech = averages$inp_scalech_avg, malmquist = averages$malmquist_avg )
overall_avg \<- results %\>% summarise( Years = "平均值", effch = round(mean(effch, na.rm = TRUE), 3), tech = round(mean(tech, na.rm = TRUE), 3), pure_inp_effch = round(mean(pure_inp_effch, na.rm = TRUE), 3), inp_scalech = round(mean(inp_scalech, na.rm = TRUE), 3), malmquist = round(mean(malmquist, na.rm = TRUE), 3) )
results_avg \<- bind_rows(results_avg, overall_avg)
dmu_avg \<- results %\>% group_by(DMU) %\>% summarise( effch_avg = round(mean(effch, na.rm = TRUE), 3), tech_avg = round(mean(tech, na.rm = TRUE), 3), pure_inp_effch_avg = round(mean(pure_inp_effch, na.rm = TRUE), 3), inp_scalech_avg = round(mean(inp_scalech, na.rm = TRUE), 3), malmquist_avg = round(mean(malmquist, na.rm = TRUE), 3) ) %\>% ungroup()
dmu_avg \<- bind_rows( dmu_avg, dmu_avg %\>% summarise( DMU = "平均值", effch_avg = round(mean(effch_avg, na.rm = TRUE), 3), tech_avg = round(mean(tech_avg, na.rm = TRUE), 3), pure_inp_effch_avg = round(mean(pure_inp_effch_avg, na.rm = TRUE), 3), inp_scalech_avg = round(mean(inp_scalech_avg, na.rm = TRUE), 3), malmquist_avg = round(mean(malmquist_avg, na.rm = TRUE), 3) ) )
results_DMU \<- dmu_avg
print(results_DMU)
wb \<- createWorkbook() addWorksheet(wb, "平均效率指数") writeData(wb, sheet = "平均效率指数", x = results_avg)
addWorksheet(wb, "DMU平均指数") writeData(wb, sheet = "DMU平均指数", x = dmu_avg)
saveWorkbook(wb, file = "Table/Average_Indices_Across_Years.xlsx", overwrite = TRUE)
%\>% autofit()
ft2 \<- flextable(dmu_avg) %\>% theme_booktabs() %\>% autofit()
results_avg_cn \<- results_avg %\>% mutate( Years = ifelse(Years == "Overall Average", "平均值", Years) )
colnames(results_avg_cn) \<- c("年份", "技术效率变化指数", "技术进步效率指数", "纯技术效率指数", "规模效率指数", "全要素生产率")
dmu_avg_cn \<- dmu_avg %\>% mutate( DMU = ifelse(DMU == "平均值", "平均值", DMU) )
colnames(dmu_avg_cn) \<- c("地区", "技术效率变化指数", "技术进步效率指数", "纯技术效率指数", "规模效率指数", "全要素生产率")
ft3 \<- flextable(results_avg_cn) %\>% theme_booktabs() %\>% autofit()
ft4 \<- flextable(dmu_avg_cn) %\>% theme_booktabs() %\>% autofit()
doc \<- read_docx() %\>% body_add_par("表 (面板数据期间)我国 xx效率分年度变动指数及其分解指数", style = "centered") %\>% body_add_flextable(ft1) %\>% body_add_par(" ", style = "Normal") %\>% body_add_par("表 (面板数据期间)我国 xx效率分年度变动指数及其分解指数", style = "centered") %\>% body_add_flextable(ft3) %\>% body_add_par(" ", style = "Normal") %\>% body_add_par("表 (面板数据期间)各地区效率整体变动指数及其分解指数", style = "centered") %\>% body_add_flextable(ft2) %\>% body_add_par(" ", style = "Normal") %\>% body_add_par("表 (面板数据期间)各地区效率整体变动指数及其分解指数", style = "centered") %\>% body_add_flextable(ft4)
print(doc, target = "Table/Malmquist指数及其分解指数结果(三线表).docx")
results_avg_filtered \<- results_avg[results_avg\$Years != "平均值", ] \
p \<- ggplot(data = results_avg_filtered, aes(x = factor(Years), group = 1)) + geom_point(aes(y = effch, shape = "技术效率变化指数"), size = 3, color = "black") + geom_point(aes(y = tech, shape = "技术进步效率指数"), size = 3, color = "black", alpha = 0.2) + geom_point(aes(y = pure_inp_effch, shape = "纯技术效率指数"), size = 3, color = "black", alpha = 0.7) + geom_point(aes(y = inp_scalech, shape = "规模效率指数"), size = 3, color = "black", alpha = 0.5) + geom_point(aes(y = malmquist, shape = "全要素生产率指数"), size = 3, color = "black") + geom_text_repel(aes(y = effch, label = round(effch, 3)), color = "black") + geom_text_repel(aes(y = tech, label = round(tech, 3)), color = "black") + geom_text_repel(aes(y = pure_inp_effch, label = round(pure_inp_effch, 3)), color = "black") + geom_text_repel(aes(y = inp_scalech, label = round(inp_scalech, 3)), color = "black") + geom_text_repel(aes(y = malmquist, label = round(malmquist, 3)), color = "black") + scale_shape_manual(name = " ", values = c(16, 17, 0, 3, 4)) + labs( title = "2013-2022 年民族八省区Malmquist指数均数情况", \ x = "年份", y = "Malmquist指数" ) + theme_minimal() + theme( axis.text.x = element_text(angle = 45, hjust = 1), legend.position = "bottom", plot.margin = margin(30, 30, 50, 30), \ = margin(10, 10, 10, 10), \ element_text(hjust = 0.5, vjust = 1) \ guide_legend(nrow = 2, byrow = TRUE, override.aes = list(size = 4, color = "black")) \
print(p)
results_avg_filtered \<- results_avg[results_avg\$Years != "平均值", ] library(ggrepel) p2 \<- ggplot(data = results_avg_filtered, aes(x = factor(Years), group = 1)) + geom_line(aes(y = effch, linetype = "技术效率变化指数"), size = 1, color = "black") + geom_line(aes(y = tech, linetype = "技术进步效率指数"), size = 1, color = "black", alpha = 0.2) + geom_line(aes(y = pure_inp_effch, linetype = "纯技术效率指数"), size = 1, color = "black", alpha = 0.7) + geom_line(aes(y = inp_scalech, linetype = "规模效率指数"), size = 1, color = "black", alpha = 0.5) + geom_line(aes(y = malmquist, linetype = "全要素生产率指数"), size = 1, color = "black") + geom_text_repel(aes(y = effch, label = round(effch, 3)), color = "black") + geom_text_repel(aes(y = tech, label = round(tech, 3)), color = "black") + geom_text_repel(aes(y = pure_inp_effch, label = round(pure_inp_effch, 3)), color = "black") + geom_text_repel(aes(y = inp_scalech, label = round(inp_scalech, 3)), color = "black") + geom_text_repel(aes(y = malmquist, label = round(malmquist, 3)), color = "black") + scale_linetype_manual(name = " ", values = c("solid", "twodash", "dashed", "dotted", "dotdash"), labels = c("技术效率变化指数", "技术进步效率指数", "纯技术效率指数", "规模效率指数", "全要素生产率指数")) + labs( title = "效率变动及其分解指数变化趋势图",\ x = "年份", y = "效率值" ) + theme_bw() + theme( legend.position = "bottom", legend.title = element_blank(), \ element_text(size = 9), \ "cm"), \ 调整图例键的高度 axis.text.x = element_text(angle = 45, hjust = 1), plot.title = element_text(hjust = 0.5, vjust = 1) \ guides(linetype = guide_legend(nrow = 2, byrow = TRUE))
print(p2)
print(results_avg) \
|